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SUMMARY 
We considered the use of hierarchical generalized linear models (HGLM) to model a smooth 

trend for residual variance in a random regression analysis. The traditional RR model uses a step 
function to model the change in residual variance over time. We compared the approaches on their 
ability to recover input parameters from two simulated growth datasets with varying inputs of 
dispersion parameters. Solutions from the RR analysis using the step function were susceptible to 
changes in dispersion, while results from the HGLM analysis were stable and more accurate. The 
application to real growth datasets with more complicated features should be considered in the 
future.  

 
INTRODUCTION 

In random regression (RR) analysis on a longitudinal axis, say time, just as genetic variance 
changes smoothly along the axis, the residual variance/dispersion (𝜎𝜎𝑒𝑒2) also changes smoothly with 
time. The latter is often approximated with using a step-function that divides the axis (e.g. age, days 
in milk) into intervals and estimating 𝜎𝜎𝑒𝑒2 within each interval. This easy solution does not model the 
dispersion smoothly, and the number of intervals, as well as the boundaries, is arbitrary.  

In growth data of some species, the effect of scale with increasing age can lead to a sharp increase 
in dispersion during early stages of the s-shaped growth curve. Following RR results, it has been 
postulated that severe scale effects can dominate the analysis despite using a step function (Apiolaza 
et al. 2000; Nel et al. 2025). The issue is notable, since heterogeneity of residuals linked to factors 
in the mixed model can affect other solutions such as animal genetic effects (Hill 1984). 

Joint modelling of the mean and dispersion was first proposed in the context of ‘normal 
regression’ (Aitkin 1987). In this setting, the computing procedure iterates between two generalized 
linear models (GLM): a model for the mean (𝐸𝐸(𝑦𝑦)) and a model for dispersion (𝐸𝐸(𝑒𝑒𝑖𝑖2) = 𝜙𝜙𝑖𝑖), where 
𝜙𝜙𝑖𝑖  is analysed as a gamma variable with a log-link function. More recently, this framework was 
extended to include random variables in the mean model as a hierarchical GLM (HGLM; Lee and 
Nelder 1996), and further extensions (e.g. double HGLM) have become of considerable interest in 
animal breeding (Rönnegård et al. 2010). 

In this paper we evaluate the functionality of HGLM to model both dispersion and genetic 
variance smoothly in the context of RR along the longitudinal axis. It was proposed that the HGLM 
machinery could be beneficial compared to traditional RR models in enabling (1) a smooth trend for 
dispersion of residuals along the longitudinal trajectory, and (2) allowing the solutions to the mean 
model to be appropriately weighted according to the GLM estimates derived from the dispersion 
model. We compared the HGLM process to a traditional RR model based on the ability to recover 
parameters from a simulated growth dataset.  

 
MATERIALS AND METHODS 

Simulated data. All simulations were done using custom scripts in R. The design of the dataset 
roughly reflected that seen for an ostrich growth dataset (Nel et al. 2025) but augmented for 
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simplicity. The simulated data consisted of a population recorded monthly for live weight (LW) as 
a longitudinal trait during the first nine months of age (𝑡𝑡).  

The population consisted of five discrete generations of 1000 progeny each. In each generation, 
200 males and 200 females were randomly selected and assigned into pairwise breeding groups, 
each pair producing five full-sib progenies. The first generation was considered the base population 
with no records for LW. The final phenotype dataset thus consisted of 4000 individuals recorded for 
LW nine times. The pedigree contained 5000 identities, the progeny of 800 sires and dams.  

For animal 𝑖𝑖 recorded at age 𝑗𝑗 = 1, … , 9, the phenotype for LW was simulated as: 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑗𝑗 +
 𝑐𝑐𝑐𝑐𝑘𝑘 + 𝑝𝑝𝑝𝑝𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖where 𝜇𝜇𝑗𝑗  is the mean for age 𝑗𝑗 following a third-degree polynomial curve 
(Figure 1) and 𝑐𝑐𝑐𝑐𝑘𝑘 is a contemporary group effects of 𝑘𝑘 = 1, … , 80 levels (detail not shown). The 
animal permanent environmental (PE) variance (𝜎𝜎𝑝𝑝𝑝𝑝2 ) was constant across ages :  𝑝𝑝𝑝𝑝𝑖𝑖~ 𝑁𝑁(0,𝜎𝜎𝑝𝑝𝑝𝑝2 ) but 
both the additive genetic variance 𝑎𝑎𝑖𝑖𝑖𝑖~ 𝑁𝑁(0,𝜎𝜎𝑎𝑎𝑎𝑎2 ) and residual variance 𝑒𝑒𝑖𝑖𝑖𝑖~ 𝑁𝑁�0,𝜎𝜎𝑒𝑒𝑒𝑒2 � varied with 
age. The structure of this heterogeneity was introduced as follows:  

Additive genetic effects were defined for each individual as linear (first order) reaction norms 
(RN) formulated to include both scale and rank type changes (Falconer 1990) across the age 
trajectory. This was achieved indirectly by first sampling breeding values at the start (𝑗𝑗 = 1;  𝜎𝜎𝑎𝑎12 =
5) and at the end (𝑗𝑗 = 9;  𝜎𝜎𝑎𝑎92 = 15) with correlation of 0.5 between breeding values (a1,a9) and 
calculating RN components intercept (𝑎𝑎0) and slope (𝑎𝑎𝑥𝑥) after standardising 𝑗𝑗 to values between -1 
and 1. 

The residual variances were defined two ways. In Sim_I, the dispersion of residuals was as 
defined 𝜙𝜙𝑗𝑗 = exp (−0.52 + 1.73𝑗𝑗 − 0.13𝑗𝑗2), a second-degree polynomial trend that first showed a 
sharp increase in residual variance, but declined as the mean growth rate plateaus. In Sim_II, the 
curve 𝜙𝜙𝑗𝑗 = exp (1.21 − 0.21𝑗𝑗 + 0.07𝑗𝑗2) was designed to reflect a sharp increase in dispersion of 
variance with age (Figure 1). 
 

 
Figure 1. The distribution of LW phenotypes (gray) surrounding the mean growth trend (solid, 
black) as determined by the respective dispersion inputs (dashed, black) to simulations I and 
II  
 

Statistical analysis. The data was analysed using the ASREML V4.2 software (Gilmour et al. 
2021). For the traditional RR analysis, the residual was modelled as a step function in three intervals 
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(1-3, 4-6, 7-9 months). This design deliberately allowed an extent of change in 𝜙𝜙𝑖𝑖within intervals, a 
notable artefact of the data in Nel et al. (2025), but most likely true for the majority of previous RR 
analyses on growth data using a step function. The HGLM procedure uses the same mean model but 
weighted by inverse variances predicted by a dispersion model fitted simultaneously. In both cases, 
the linear model terms for the mean model were specified according to the simulation model design: 
𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑎𝑎0 + 𝑍𝑍𝑎𝑎𝑥𝑥 + 𝑍𝑍𝑍𝑍𝑍𝑍 + 𝑒𝑒  assuming a normal distribution with an identity link but with 
heterogenous time dependent residual variance.  Model testing was not a deliberate part of the study. 
The dispersion model in the HGLM analysis analysed the squared residuals from the mean model 
(𝐸𝐸(𝑒𝑒𝑖𝑖2) = 𝜙𝜙𝑖𝑖) assuming a gamma distribution with a log link: log(𝜙𝜙) = 𝑋𝑋𝑋𝑋 where this Xb models 
a curvilinear (quadratic polynomial) trend. The appropriate covariance functions were used to find 
solutions for genetic variance (𝜎𝜎𝑎𝑎𝑎𝑎2 ) and accuracy of prediction (𝑐𝑐𝑐𝑐𝑐𝑐(𝑒𝑒𝑒𝑒𝑒𝑒� , 𝑒𝑒𝑒𝑒𝑒𝑒)) at selected age 
points, j. For each scenario, the simulation and analysis were repeated 20 times, and a mean of these 
results was used as the final estimate of either RR or HGLM. 

 
RESULTS AND DISCUSSION 

Mean and dispersion modelling. Both analyses showed reasonable convergence behaviour for 
both datasets (Sim_I and II), although RR usually converged in fewer iterations compared to HGLM. 
For HGLM, the dispersion model predicted both simulation log(𝜙𝜙) trends with a very high accuracy 
with errors too small for it to be visually discernible from the true curves shown in Figure 1. The 
only example we found of HGLM applied to predict a smooth residual in RR was a dispersion model 
for lactation based on days in milk (Jaffrezic et al. 2000). To our knowledge, it has not been applied 
to growth curves, where the proportional change in the dispersion parameter 𝜙𝜙 is most likely of 
much greater magnitude than that expected for lactation data.  

Variance parameters. It was apparent that RR analysis was susceptible to changes in 
dispersion, which varied depending on log(𝜙𝜙)  (Table 1). For Sim_I, with high dispersion at 
intermediate ages, the RR analysis was prone to overestimating genetic variance at the RN intercept 
component (𝜎𝜎𝑎𝑎0

2 ) and underestimate variance of the RN slope (𝜎𝜎𝑎𝑎𝑥𝑥
2 ) – the latter by a considerable 

margin. This would explain the overestimation of the genetic correlation between breeding values 
at the ends of the trajectory (𝑝𝑝(𝑎𝑎1, 𝑎𝑎9) = 0.85 >  0.5; Table 1), which shows a partial failure in 
capturing reranking effects (Falconer 1990). In Sim_II, RR overestimated 𝜎𝜎𝑎𝑎𝑥𝑥

2 , likely due to high 
dispersion at the final age points. In both scenarios, the HLGM process was less affected by the 
curves of log(𝜙𝜙), and solved the mean model with estimates very close to the true values – but 
perhaps also slightly underestimating the animal PE effect (Table 1).  

 
Table 1. True values and solutions for variance parameters following RR and HGLM analysis. 
*The estimated values are the mean following 20 simulations 
  

Parameters True Values Sim_I* Sim_II* 
  RR HGLM RR HGLM 

𝜎𝜎𝑝𝑝𝑝𝑝2  10 9.02 9.73 9.63 9.64 
𝜎𝜎𝑎𝑎02  7.15 8.64 7.28 8.00 7.31 
𝜎𝜎𝑎𝑎𝑎𝑎2  1.89 0.88 1.75 2.59 1.88 

𝑝𝑝(𝑎𝑎0, 𝑎𝑎𝑥𝑥) 0.56 0.80 0.55 0.60 0.54 
𝑝𝑝(𝑎𝑎1, 𝑎𝑎9) 0.50 0.83 0.54 0.43 0.51 

 
Genetic variance at different ages and accuracy of prediction. The RR analysis estimated 𝜎𝜎𝑎𝑎𝑗𝑗

2  
of Sim_I close to the real values for first (𝑗𝑗 = 1) and last (𝑗𝑗 = 9) age points, but slightly higher 
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values at intermediate ages (Table 2). For Sim_II, it overestimated 𝜎𝜎𝑎𝑎𝑗𝑗
2  for 9 months of age by a 

notable margin, an indication of overestimating scale effects. HGLM results better aligned with the 
known input values which also resulted in a higher accuracy of prediction, most particularly for 
Sim_I (Table 2). Generally observing lower accuracy values at the ends of the trajectory was 
expected, since errors in estimating RN slope components are accentuated as distance to the intercept 
increases. 

The computation in HGLM includes iterative updates of 𝑤𝑤𝑖𝑖 , the 𝑖𝑖𝑡𝑡ℎ  diagonal element of the 
weight matrix 𝑊𝑊of the mixed model equations, by the inverse of solutions 𝜙𝜙𝑖𝑖 from the dispersion 
model. In the current design, a benefit of this smooth adjustment from the HGLM process was clear, 
and, as argued by Rönnegård et al. (2010), the possibly important aspects of leverage should not be 
overlooked in animal breeding analysis with high heterogeneity. It should be noted, however, that 
the highly accurate modelling of log(𝜙𝜙) would have been very important to the correct adjustment 
of 𝑊𝑊, and the process of model testing was ignored in this study.  

Also, in real datasets, log(𝜙𝜙) trends are unlikely to be well specified by inflexible polynomials. 
In a separate analysis, dispersion models making use of cubic smoothing splines also converged 
with accurate solutions. This is expected to be the most powerful application of HGLM to real data 
where both the magnitude and the change in log(𝜙𝜙) are unknown.   

 
Table 2. True values and solutions for genetic parameters and prediction accuracy following 
RR and HGLM analysis. *The estimated values are the mean following 20 simulations 
 

Age 
True Values 

Genetic Parameters Accuracy of EBVs 
(j) Sim_I*    Sim_II*    Sim_I* Sim_II* 
 𝜎𝜎𝑎𝑎𝑗𝑗

2  RR HGLM RR HGLM RR HGLM RR HGLM 
1 4.98 4.58 5.12 5.23 5.20 0.63 0.69 0.70 0.70 
3 5.36 6.28 5.55 5.65 5.55 0.70 0.72 0.74 0.74 
5 7.16 8.64 7.28 8.00 7.31 0.71 0.72 0.75 0.76 
7 10.38 11.67 10.32 12.30 10.48 0.68 0.71 0.75 0.77 
9 15.03 15.36 14.67 18.54 15.07 0.66 0.69 0.74 0.76 

 
CONCLUSION 

In the presence of sharp changes in dispersion, the genetic solutions from RR analysis can be 
affected by the choice of the step function. Analysis within the HGLM framework, in turn, can have 
more accurate genetic solutions as found here. However, the design of the simulated dataset was 
highly simplistic, and the process needs to be tested on real data. 
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